[dsm_text_divider _builder_version=”4.17.3″ _module_preset=”default” hover_enabled=”0″ sticky_enabled=”0″ header=”We Never Said it Wasn’t Boring”][/dsm_text_divider]
Only Some of our References - All Research Exclusively from NCBI and PubMed.
[1] Schaefer H: Penetration and percutaneous absorption of topical retinoids. Skin Pharmacol 1993;6(suppl 1):17–23

https://www.ncbi.nlm.nih.gov/pubmed/8142107

[2] Antille, C., Tran, C., Sorg, O. and Saurat, J. H. (2004) Penetration and metabolism of topical retinoids in ex vivo organ-cultured full-thickness human skin explants. Skin Pharmacol. Physiol. 17, 124-128.

https://www.ncbi.nlm.nih.gov/pubmed/15087591?dopt=Abstract

[3] Shao Y, He T, Fisher GJ, Voorhees JJ, Quan T. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo. Int J Cosmet Sci. 2017;39(1):56–65. doi:10.1111/ics.12348

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136519/

[4] Lee, Woan-Ruoh & Shen, Shing-Chuan & Kuo-Hsien, Wang & Hu, Chung-Hong & Fang, Jia-You. (2003). Lasers and Microdermabrasion Enhance and Control Topical Delivery of Vitamin C. The Journal of investigative dermatology. 121. 1118-25. 10.1046/j.1523-1747.2003.12537.x.

https://www.ncbi.nlm.nih.gov/pubmed/14708614

[5] Lee, A.-R.C. & Tojo, Kakuji. (2001). An Experimental Approach to Study the Binding Properties of Vitamin E (.ALPHA.-Tocopherol) during Hairless Mouse Skin Permeation.. Chemical & pharmaceutical bulletin. 49. 659-63. 10.1248/cpb.49.659.

https://www.ncbi.nlm.nih.gov/pubmed/9468650

[6] Crisan D, Roman I, Crisan M, Scharffetter-Kochanek K, Badea R. The role of vitamin C in pushing back the boundaries of skin aging: an ultrasonographic approach. Clin Cosmet Investig Dermatol. 2015;8:463–470. Published 2015 Sep 2. doi:10.2147/CCID.S84903

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562654/

[7] Traber MG, Manor D. Vitamin E. Adv Nutr. 2012;3(3):330–331. Published 2012 May 1. doi:10.3945/an.112.002139

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649464/

[8] Hassanpour, S.E., Rostami, K., Azargashb, E., Saberi, K.M., Hamraz, S.H., Vajari, F.F., & Rouientan, A. (2019). The Effect of Topical Vitamin A and E on Ischemic Random Skin Flap Survival. World journal of plastic surgery.

https://www-ncbi-nlm-nih-gov.libproxy2.usc.edu/pmc/articles/PMC6409152/

[9] Bos, J. D. and Meinardi, M. M. (2000), The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 9: 165-169. doi:10.1034/j.1600-0625.2000.009003165.x

https://www.ncbi.nlm.nih.gov/pubmed/10839713

[10] Galasso I, Russo R, Mapelli S, et al. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front Plant Sci. 2016;7:688. Published 2016 May 20. doi:10.3389/fpls.2016.00688

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873519/

[11] Fernande G. Honfo, Noel Akissoe, Anita R. Linnemann, Mohamed Soumanou & Martinus A. J. S. Van Boekel (2014) Nutritional Composition of Shea Products and Chemical Properties of Shea Butter: A Review, Critical Reviews in Food Science and Nutrition, 54:5, 673-686, DOI: 10.1080/10408398.2011.604142

https://www.ncbi.nlm.nih.gov/pubmed/24261539

[12] Shellie, R.A., Mondello, L., Marriott, P.J., & Dugo, G. (2002). Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of chromatography. A, 970 1-2, 225-34 .

https://www.ncbi.nlm.nih.gov/pubmed/12350096

[13] Schmidt, E.H., Bail, S., Buchbauer, G., Stoilova, I., Atanasova, T., Stoyanova, A.S., Krastanov, A., & Jirovetz, L. (2009). Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Natural product communications, 4 8, 1107-12 .

https://www.ncbi.nlm.nih.gov/pubmed/19768994

[14] Cronin, M.T., Dearden, J.C., Moss, G.P., & Murray-Dickson, G. (1999). Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 7 4, 325-30

https://www.ncbi.nlm.nih.gov/pubmed/9971916

[15] Değim, I.T. (2006). New tools and approaches for predicting skin permeability. Drug discovery today, 11 11-12, 517-23

https://www.ncbi.nlm.nih.gov/pubmed/16713903

[16] Guy, R.H., & Potts, R.O. (1992). Structure-permeability relationships in percutaneous penetration. Journal of pharmaceutical sciences, 81 6, 603-4

https://www.ncbi.nlm.nih.gov/pubmed/1522504

[17] Tokudome Y, Komi T, Omata A, Sekita M. A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci Rep. 2018;8(1):2336. Published 2018 Feb 5. doi:10.1038/s41598-018-20805-3

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799189/

[18] Saghaleini SH, Dehghan K, Shadvar K, Sanaie S, Mahmoodpoor A, Ostadi Z. Pressure Ulcer and Nutrition. Indian J Crit Care Med. 2018 Apr;22(4):283-289

https://www.ncbi.nlm.nih.gov/pubmed/29743767

[19] Szulc P. Bone turnover: Biology and assessment tools. Best Pract. Res. Clin. Endocrinol. Metab. 2018 Oct;32(5):725-738

https://www.ncbi.nlm.nih.gov/pubmed/30449551

[20] Wu, M., Crane, J.T., Gondal, A.Z., & Hughes, J.N. (2018). Biochemistry, Collagen Synthesis.

https://www.ncbi.nlm.nih.gov/books/NBK507709/

[21] Cohen, I., Diegelmann, R., & Wise, W. (1976). Biomaterials and collagen synthesis. Journal of Biomedical Materials Research Part A, 10(6), 965-970.

https://www.ncbi.nlm.nih.gov/pubmed/186458

[22] Burgess C. Topical vitamins. J Drugs Dermatol 2008;7:s2-6

https://www.ncbi.nlm.nih.gov/pubmed/18681152

[23] Abbassi, A.E., Khalid, N., Zbakh, H., & Ahmad, A.N. (2014). Physicochemical characteristics, nutritional properties, and health benefits of argan oil: a review. Critical reviews in food science and nutrition, 54 11, 1401-14 .

https://www.ncbi.nlm.nih.gov/pubmed/24580537

[24] Shapiro, S., & Saliou, C. (2001). Role of vitamins in skin care. Nutrition, 17(10), 839-844.

https://www.ncbi.nlm.nih.gov/pubmed/11684391

[25] Lauer, A., Groth, N., Haag, S., Darvin, M.E., Lademann, J.D., & Meinke, M.C. (2013). Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin pharmacology and physiology, 26 3, 147-54 .

https://www.ncbi.nlm.nih.gov/pubmed/23689595

[26] Duarte, Tiago & Cooke, Marcus & Jones, George. (2008). Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free radical biology & medicine. 46. 78-87. 10.1016/j.freeradbiomed.2008.09.028.

https://www.ncbi.nlm.nih.gov/pubmed/18973801

[27] Dallon, J., & Sherratt, J. (2006). A mathematical model for fibroblast and collagen orientation. Bulletin of Mathematical Biology, 60(1), 101-129.

https://www.ncbi.nlm.nih.gov/pubmed/9574968

[28] Frank, C.B. (2004) Ligament structure, physiology and function. Journal of Musculoskeletal and Neuronal Interactions, 4, 199-201.

https://www.ncbi.nlm.nih.gov/pubmed/15615126

[29] Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 22.3, Collagen: The Fibrous Proteins of the Matrix.

https://www.ncbi.nlm.nih.gov/books/NBK21582/

[30] Pullar, J.M., Carr, A.C., & Vissers, M.C. (2017). The Roles of Vitamin C in Skin Health. Nutrients.

https://www.ncbi.nlm.nih.gov/pubmed/18973801

[31] Serre, C., Papillard, M., Chavassieux, P., Voegel, J., & Boivin, G. (1999). Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research Part A, 42(4), 626-633.

https://www.ncbi.nlm.nih.gov/pubmed/9827688

[32] Chandrasekaran, N.C., Sanchez, W.Y., Mohammed, Y.H., Grice, J.E., Roberts, M.S., & Barnard, R.T. (2016). Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnesium research, 29 2, 35-42 .

https://www.ncbi.nlm.nih.gov/pubmed/27624531

[33] MacFarlane, A.J., Cogswell, M.E., de Jesus, J.M., Greene-Finestone, L.S., Klurfeld, D.M., Lynch, C.J., Regan, .K., & Yamini, .S. (2019). A report of activities related to the Dietary Reference Intakes from the Joint Canada-US Dietary Reference Intakes Working Group. American Journal of Clinical Nutrition, 109(2),

https://www.ncbi.nlm.nih.gov/pubmed/30721931

[34] Kafi, R., Kwak, H., Schumacher, W., Cho, S., Hanft, V., Hamilton, T., King, A., Neal, J., Varani, J., Fisher, G., Voorhees, J., & Kang, S. (2007). Improvement of Naturally Aged Skin With Vitamin A (Retinol). Archives of Dermatology, 143(5), 606-612.

https://www.ncbi.nlm.nih.gov/pubmed/17515510

[35] Min, Y., Niu, Z., Sun, T., Wang, Z., Jiao, P., Zi, B., Chen, P., Tian, D., & Liu, F. (2018). Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poultry Science, 97(4), 1238-1244.

https://www.ncbi.nlm.nih.gov/pubmed/29452404

[36] Kong, R., Cui, Y., Fisher, G., Wang, X., Chen, Y., Schneider, L., & Majmudar, G. (2016). A comparative study of the effects of retinol and retinoic acid on histological, molecular, and clinical properties of human skin. Journal of Cosmetic Dermatology, 15(1), 49-57.

https://www.ncbi.nlm.nih.gov/pubmed/26578346

[37] Varani, J., Warner, R.L., Gharaee-Kermani, M., Phan, S.H., Kang, S., Chung, J.H., Wang, Z., Datta, S.C., Fisher, G.E., & Voorhees, J.H. (2000). Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. The Journal of investigative dermatology, 114 3, 480-6 .

https://www.ncbi.nlm.nih.gov/pubmed/10692106

[38] Romana-Souza, B., Silva-Xavier, W., & Monte-Alto-Costa, A. (2018). Topical retinol attenuates stress-induced ageing signs in human skin ex vivo, throughEGFR activation viaEGF, but notERK andAP-1 activation. Experimental dermatology.

https://www.ncbi.nlm.nih.gov/pubmed/29704879

[39] Berkers, T., Dijk, L.V., Absalah, S., Smeden, J.V., & Bouwstra, J.A. (2017). Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Experimental dermatology, 26 1, 36-43 .

https://www.ncbi.nlm.nih.gov/pubmed/27305861

[40] WRIGHT, S. (1991). Essential fatty acids and the skin. British Journal of Dermatology, 125(6),

https://www.ncbi.nlm.nih.gov/pubmed/2143069

[41] Dapic, I., Kobetic, R., Brkljacic, L., Kezic, S., & Jakasa, I. (2018). Quantification of free fatty acids in human stratum corneum using tandem mass spectrometry and surrogate analyte approach. Biomedical Chromatography, 32(2), n/a-n/a.

https://www.ncbi.nlm.nih.gov/pubmed/28755445

[42] McCusker, M., & Grant-Kels, J. (2010). Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clinics in Dermatology, 28(4), 440-451.

https://www.ncbi.nlm.nih.gov/pubmed/20620762

[43] Cui, L., Jia, Y., Cheng, Z., Gao, Y., Zhang, G., Li, J., & He, C. (2016). Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. Journal of Cosmetic Dermatology, 15(4), 549-558.

https://www.ncbi.nlm.nih.gov/pubmed/27405934

[44] Kendall, A., Kiezel-Tsugunova, M., Brownbridge, L., Harwood, J., & Nicolaou, A. (2017). Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochimica et Biophysica Acta Biomembranes Or Bba Biomembranes, 1859(9), 1679-1689.

https://www.ncbi.nlm.nih.gov/pubmed/28341437

[45] Burnett, C., Fiume, M., Bergfeld, W., Belsito, D., Hill, R., Klaassen, C., Liebler, D., Marks, J., Shank, R., Slaga, T., Snyder, P., & Alan Andersen, F. (2017). Safety Assessment of Plant-Derived Fatty Acid Oils. International Journal of Toxicology, 36(3_suppl), 51S-129S.

https://www.ncbi.nlm.nih.gov/pubmed/29243540

[46] Arct, J., Chelkowska, M., Kasiura, K., & Pietrzykowski, P. (2002). The fatty acids as penetration enhancers of amino acids by ion pairing. International Journal of Cosmetic Science, 24(6),

https://www.ncbi.nlm.nih.gov/pubmed/18494885

[47] Dioguardi, F. (2008). Nutrition and skin. Collagen integrity: a dominant role for amino acids. Clinics in Dermatology, 26(6), 636-640.

https://www.ncbi.nlm.nih.gov/pubmed/18940545

[48] Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. International Journal of Biological Macromolecules, 104, 987-991.

https://www.ncbi.nlm.nih.gov/pubmed/28687386

[49] Dioguardi, F. (2008). Nutrition and skin. Collagen integrity: a dominant role for amino acids. Clinics in Dermatology, 26(6), 636-640.

https://www.ncbi.nlm.nih.gov/pubmed/18940545

[50] DePhillipo NN, Aman ZS, Kennedy MI, Begley JP, Moatshe G, LaPrade RF. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop J Sports Med. 2018;6(10):2325967118804544. Published 2018 Oct 25. doi:10.1177/2325967118804544

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204628/

[51] Lacroix, S., Bouez, C., Vidal, S., Cenizo, V., Reymermier, C., Justin, V., Vičanová, J., & Damour, O. (2006). Supplementation with a complex of active nutrients improved dermal and epidermal characteristics in skin equivalents generated from fibroblasts from young or aged donors. Biogerontology, 8(2), 97-109.

https://www.ncbi.nlm.nih.gov/pubmed/17028931

[52] Anderson, B. Nutrition and wound healing: the necessity of assessment. British Journal of Nursing 2005 14:Sup5, S30-S38

https://www.ncbi.nlm.nih.gov/pubmed/16301919

[53] Moores, J. (2013). Vitamin C: a wound healing perspective. British Journal of Community Nursing, 18(Sup12), S6-S11.

https://www.ncbi.nlm.nih.gov/pubmed/24796079

[54] Sinno, S., Lee, D., & Khachemoune, A. (2011). Vitamins and cutaneous wound healing. Journal of Wound Care, 20(6), 287-293.

https://www.ncbi.nlm.nih.gov/pubmed/21727879

[55] Mohammed, B., Fisher, B., Kraskauskas, D., Ward, S., Wayne, J., Brophy, D., Fowler, A., Yager, D., & Natarajan, R. (2016). Vitamin C promotes wound healing through novel pleiotropic mechanisms. International Wound Journal, 13(4), 572-584.

https://www.ncbi.nlm.nih.gov/pubmed/26290474

[56] Johnstone, C., Farley, A., & Hendry, C. (2005). The physiological basics of wound healing. Nursing Standard, 19(43), 59-65.

https://www.ncbi.nlm.nih.gov/pubmed/16021892

[57] Samarawickrama, C., Chew, S., & Watson, S. (2015). Retinoic acid and the ocular surface. Survey of Ophthalmology, 60(3), 183-195.

https://www.ncbi.nlm.nih.gov/pubmed/25890622

[58] Graves C, Saffle J, Cochran A. Actual burn nutrition care practices:an update. J Burn Care Res 2009;30:77-82.

https://www.ncbi.nlm.nih.gov/pubmed/23739487

[59] Hobson, R. (2016). Vitamin E and wound healing: an evidence‐based review. International Wound Journal, 13(3), 331-335.

https://www.ncbi.nlm.nih.gov/pubmed/25124164

[60] Silva, J., Burger, B., Kühl, C., Candreva, T., dos Anjos, M., & Rodrigues, H. (2018). Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair. Mediators of Inflammation, 2018, 17

https://www.ncbi.nlm.nih.gov/pubmed/29849484

[61] Ribeiro Barros Cardoso, C., Aparecida Souza, M., Amália Vieira Ferro, E., Favoreto, S., & Deolina Oliveira Pena, J. (2004). Influence of topical administration of n‐3 and n‐6 essential and n‐9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair and Regeneration, 12(2),

https://www.ncbi.nlm.nih.gov/pubmed/15086775

[62] Cardoso, C., Favoreto, S., Oliveira, L., Vancim, J., Barban, G., Ferraz, D., & Silva, J. (2011). Oleic acid modulation of the immune response in wound healing: A new approach for skin repair. Immunobiology, 216(3), 409-415.

https://www.ncbi.nlm.nih.gov/pubmed/20655616

[63] Tanvir, R., Javeed, A., & Rehman, Y. (2018). Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiology Letters, AdvanceArticle(12),

https://www.ncbi.nlm.nih.gov/pubmed/29733374

[64] Murillo, A., & Fernandez, M. (2016). Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Advances in Nutrition, 7(1), 14-24.

https://www.ncbi.nlm.nih.gov/pubmed/26773012

[65] Ruffell, S., Müller, K., & McConkey, B. (2015). Comparative assessment of microalgal fatty acids as topical antibiotics. Journal of Applied Phycology, 28(3), 1695-1704.

https://www.ncbi.nlm.nih.gov/pubmed/2984984

[66] Jung, S., & Lee, S. (2016). The antibacterial effect of fatty acids on Helicobacter pylori infection. The Korean Journal of Internal Medicine, 31(1), 30-35.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712431/

[67] Desbois, A., Mearns-Spragg, A., & Smith, V. (2008). A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 11(1), 45-52.

https://www.ncbi.nlm.nih.gov/pubmed/18575935

[68] Hinton Jr, A., & Ingram, K. (2012). Influence of Ethylenediamine-N,N’-Discuccinic Acid (EDDS) Concentration on the Bactericidal Activity of Fatty Acids in Vitro*. Journal of Food Safety, 32(1), 102-107.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550544/

[69] “Microdermabrasion.” Microdermabrasion, American Academy of Dermatology, 2019, www.aad.org/public/diseases/cosmetic-treatments/microdermabrasion.