.divi-life-cta-menu a { background-color: #44ceb0; padding: 15px 25px !important; border-radius: 25px; text-transform: uppercase; color: #fff !important; text-align: center; }


The Science Behind


Here you will find a brief overview of the science behind Biomechanic Labs  2-Step Pain Relief Kit with AMA formatted citations of supporting scientific evidence published on MEDLINE courtesey of the National Center of Biotechnology Information and PubMed – the same resources used by doctors and universities worldwide. We will cover the science of absorption and what makes Biomechanic Labs more effective in topical pain relief.  At the end, we will cover the additional benefits Biomechanic Labs may provide for you.

Our First Priority


Permeation Through the Statum Corneum Depends on Lipophilicity and Molecular Weight

     The statum corneum is the top-most layer of skin. It is widely known from numerous studies that lipophicility (the ability of a chemical compound to dissolve in fats) and molecular weight play the primary role in absorption through the skin. Here are just a few studies if you are interested in learning in full depth about this relationship.

Cronin et al., 1999 [14]

Degim, 2006 [15]

Potts and Guy, 1992 [16]


Biomechanic Labs Low Molecular Weight


All Biomechanic Labs Ingredients Highly Liphilic


absorption pATHWAYS

Intercellular: pathway between cells

Intracellular: pathway through cells

Transappendageal: pathway through hair follicles and sweat glands

Up to 72 Hours of Relief

When applied correctly, Biomechanic Labs 2-Step Pain Relief Kitwill provide a full day of relief.


Biomechanic Labs 100% all-natural anti-inflammatory scrub and a nano CBD topical gel


Biomechanic Labs Nourishes Collagen

99.5% All-natural/organic

Because of high levels of absorption, all ingredients in Biomechanic Labs are 99.5% all-natural/organic from GMP certified manufacturers within the U.S. and .5% gelling agent used to make the gel itself. These ingredients are high in specially selected vitamins and fatty acids that reduce inflammation which is the root cause of pain and reduced mobility.

Nutrtition for Your Skin

Biomechanic Labs is specially formulated to include select nutrients.  With over 84 minerals, a variety of vitamins, fatty acids, minerals, antioxidants, and all 20 amino acids – we provide everything the body needs to create healthy skin cells.

Size Matters

Dalton 500 Rule

The barrier function of skin is principally attributed to the stratum corneum. Only small molecules, usually less than 500 Da, and lipophilic compounds can penetrate the skin barrier [17]

     A Dalton (abbreviated Da.) is a unit of mass widely used in physics and chemistry. You can think of it as a weight scale for an atom or molecule. There is an association between the size of an atom or molecule and its weight as well asorbability. For example an atom of helium-4 has a mass of 4.0026 Da.  Aspirin, C9H8O4, has an average mass of approximately 180.157.  So in general, the higher the weight of the atom/molecule the larger the size of the atom/molecule.

     The human skin is indeed an effective barrier but it cannot prevent smaller molecules to enter.  Somewhere around 500Dalton is the start of a rapid decline in skin ab-sorption due to molecular size. [9]


     Graph representing the relationship between the molecular weight of a compound and how well it absorbs into the skin (below).



List of Nutrients in 2-Step Pain Relief Kit Under 500 Daltons

Vitamin B, Vitamin E, Lysine, Methionine, Cystine, Threonine, Isoleucine, Valine, Leucine, Histidine, Phenylalanine, Tyrosene, Aspartic Acid, Serine, Glutamine, Proline, Glycine, Alanine, Asparagine, Glutamic Acid, Arginine, Tryptophan.

Vitamin C, Palmitoleic Acid (16:1), Estearic Acid (18:0), Oleic Acid (18:1), Linoleic Acid (18:2,ω-6), Eicosanoic Acid (20:0), α-Linolenic Acid (18:3,ω-3), γ-Linolenic Acid (18:3,ω-6), Eicosenoic Acid (20:1), Docosanoic Acid (22:0)

Minerals: Magnesium, Phosphorus, Sodium, Calcium, Potassium

Vitamin A, Magnesium, Phosphorus, Potassium, Calcium, Carotene, Sodium, Manganese, Zinc, Copper, Glycerin, a-pinene, limonene, 1,8-cineole, cis-ocimene, trans-ocimene, 3-octanone, camphor, linalool, linalyl acetate, caryophyllene, terpinen-4-ol, lavendulyl acetate


All ingredients in Biomechanic Labs 2-Step Pain Relief Kit Under 500 Daltons


92% of Ingredients Under 100 Daltons

How we attack pain and inflammation


List of Active Ingredients Proven to Reduce Inflammation and Pain with Supporting Citations from the National Center of Biotechnology Information

  • CBD [71] [72] [73]
  • Linalool [74] [75] [76]
  • Omega-3 Fatty Acids [77] [78] [79]
  • Vitamin E [80] [81] [82]
  • Vitamin A [83] [84] [85]
  • Vitamin C [86] [83]87] [88]
  • Magnesium [89] [90] [91] 
  • Caprylic Acid  [92] [93] [94]
  • Caproic Acid  [95] [96] [97]

Now let’s see how each of these active ingredients fight inflammation and pain in totally different ways. In medicine, these different ways are called pathways.  Pathways refer to a series of steps or interactions between molecules, cells, or tissues that lead to a specific biological response or outcome. These pathways are fundamental to understanding the mechanisms underlying various physiological processes, diseases, and therapeutic interventions. Here’s an example of a list of pathways for inflammation:

Inflammatory Signaling Pathways: These pathways regulate the production and release of inflammatory mediators, such as cytokines, chemokines, and prostaglandins, in response to tissue injury, infection, or other stimuli. Key pathways include:

  • NF-κB (Nuclear Factor-kappa B) pathway: Regulates the expression of genes involved in inflammation, immune responses, and cell survival.
  • MAPK (Mitogen-Activated Protein Kinase) pathway: Controls the activation of transcription factors and the production of inflammatory cytokines.
  • JAK-STAT (Janus Kinase-Signal Transducer and Activator of Transcription) pathway: Mediates the signaling of cytokines and growth factors involved in inflammation and immune

List of Pathways Each Active Ingredient in the 2-Step Pain Relief Kit Takes to Fight Inflammation and Pain

Pathways for Inflammation:

  1. Endocannabinoid System (ECS) Modulation
  2. Serotonin Receptor Activation 
  3. TRPV1 Receptor Modulation
  4. Terpene Activity 
  5. GABAergic System Modulation 
  6. Prostaglandin Production
  7. Gene Expression Regulation
  8. GLA Conversion 
  9. Inhibition of Inflammatory Mediators 
  10. Antioxidant Activity 
  11. Immune Modulation
  12. Regulation of Inflammatory Pathways
  13. Effects of caprylic acid and caproic acid 
  14. Various roles of amino acids in metabolism, neurotransmitter synthesis, and antioxidant defense

Total pathways for inflammation: 14

Pathways for Pain Inhibition:

  1. TRPM8 Receptor Activation 
  2. Calcium Channel Blockade 
  3. Terpene Activity 
  4. Endocannabinoid System
  5. Serotonin Receptor Activation
  6. Analgesic Effects 
  7. Potential effects of caprylic acid and caproic acid 

The ingredients analyzed encompass a diverse array of pathways aimed at combating inflammation and pain. Cannabidiol (CBD) operates through the endocannabinoid system, serotonin receptors, and TRPV1 receptors, while terpenes such as linalool and components like omega-3 fatty acids exert anti-inflammatory effects. Vitamin E contributes through antioxidant activity, alongside immune modulation facilitated by vitamins A and C. Magnesium regulates inflammatory pathways, and MCT oil’s caprylic and caproic acids offer additional avenues for pain relief. Moreover, amino acids participate in various metabolic, neurotransmitter synthesis, and antioxidant processes. Collectively, these ingredients engage in a multifaceted approach targeting diverse biological mechanisms to alleviate inflammation and pain, offering a holistic perspective on natural therapeutic interventions. Our active ingredients are Vitamin A, C, E, MCT Oil (found in coconut oil), Magnesium, These ingredients exert their effects through various mechanisms, including modulation of receptor activity, inhibition of inflammatory mediators, and regulation of gene expression, ultimately leading to pain relief and inflammation reduction.


Proven Anti-Inflammatory and Pain Relieving Agents


Pain Relieiving and Anti-Inflammatory Agents Work Synergistically Through Numerous Unique Pathways


From the beginning, Biomechanic Labs has been focused on outperforming OTC steroid filled creams by using a novel approach to successfully deliver superior results to you! We are innovative leaders with a passion for pain relief, and also a passion for needs like plantar faciitis. But at the end of the day, our biggest success is helping people get more people enjoyment out of living a better quality of life.


  • LASTS 3.5-72 HOURS




[1] Schaefer H: Penetration and percutaneous absorption of topical retinoids. Skin Pharmacol 1993;6(suppl 1):17–23 https://www.ncbi.nlm.nih.gov/pubmed/8142107

[2]  Antille, C., Tran, C., Sorg, O. and Saurat, J. H. (2004) Penetration and metabolism of topical retinoids in ex vivo organ-cultured full-thickness human skin explants. Skin Pharmacol. Physiol. 17, 124-128. https://www.ncbi.nlm.nih.gov/pubmed/15087591?dopt=Abstract
[3]  Shao Y, He T, Fisher GJ, Voorhees JJ, Quan T. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo. Int J Cosmet Sci. 2017;39(1):56–65. doi:10.1111/ics.12348

[4] Lee, Woan-Ruoh & Shen, Shing-Chuan & Kuo-Hsien, Wang & Hu, Chung-Hong & Fang, Jia-You. (2003). Lasers and Microdermabrasion Enhance and Control Topical Delivery of Vitamin C. The Journal of investigative dermatology. 121. 1118-25. 10.1046/j.1523-1747.2003.12537.x.

[5]  Lee, A.-R.C. & Tojo, Kakuji. (2001). An Experimental Approach to Study the Binding Properties of Vitamin E (.ALPHA.-Tocopherol) during Hairless Mouse Skin Permeation.. Chemical & pharmaceutical bulletin. 49. 659-63. 10.1248/cpb.49.659.

[6]  Crisan D, Roman I, Crisan M, Scharffetter-Kochanek K, Badea R. The role of vitamin C in pushing back the boundaries of skin aging: an ultrasonographic approach. Clin Cosmet Investig Dermatol. 2015;8:463–470. Published 2015 Sep 2. doi:10.2147/CCID.S84903

[7]  Traber MG, Manor D. Vitamin E. Adv Nutr. 2012;3(3):330–331. Published 2012 May 1. doi:10.3945/an.112.002139

[8] Hassanpour, S.E., Rostami, K., Azargashb, E., Saberi, K.M., Hamraz, S.H., Vajari, F.F., & Rouientan, A. (2019). The Effect of Topical Vitamin A and E on Ischemic Random Skin Flap Survival. World journal of plastic surgery. https://www-ncbi-nlm-nih-gov.libproxy2.usc.edu/pmc/articles/PMC6409152/

[9] Bos, J. D. and Meinardi, M. M. (2000), The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 9: 165-169. doi:10.1034/j.1600-0625.2000.009003165.x


[10]  Galasso I, Russo R, Mapelli S, et al. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front Plant Sci. 2016;7:688. Published 2016 May 20. doi:10.3389/fpls.2016.00688


[11] Fernande G. Honfo, Noel Akissoe, Anita R. Linnemann, Mohamed Soumanou & Martinus A. J. S. Van Boekel (2014) Nutritional Composition of Shea Products and Chemical Properties of Shea Butter: A Review, Critical Reviews in Food Science and Nutrition, 54:5, 673-686, DOI: 10.1080/10408398.2011.604142

[12] Shellie, R.A., Mondello, L., Marriott, P.J., & Dugo, G. (2002). Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of chromatography. A, 970 1-2, 225-34 .

[13] Schmidt, E.H., Bail, S., Buchbauer, G., Stoilova, I., Atanasova, T., Stoyanova, A.S., Krastanov, A., & Jirovetz, L. (2009). Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Natural product communications, 4 8, 1107-12 .

[14] Cronin, M.T., Dearden, J.C., Moss, G.P., & Murray-Dickson, G. (1999). Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 7 4, 325-30

[15] Değim, I.T. (2006). New tools and approaches for predicting skin permeability. Drug discovery today, 11 11-12, 517-23

[16] Guy, R.H., & Potts, R.O. (1992). Structure-permeability relationships in percutaneous penetration. Journal of pharmaceutical sciences, 81 6, 603-4

[17] Tokudome Y, Komi T, Omata A, Sekita M. A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci Rep. 2018;8(1):2336. Published 2018 Feb 5. doi:10.1038/s41598-018-20805-3

[18] Saghaleini SH, Dehghan K, Shadvar K, Sanaie S, Mahmoodpoor A, Ostadi Z. Pressure Ulcer and Nutrition. Indian J Crit Care Med. 2018 Apr;22(4):283-289

[19] Szulc P. Bone turnover: Biology and assessment tools. Best Pract. Res. Clin. Endocrinol. Metab. 2018 Oct;32(5):725-738

[20] Wu, M., Crane, J.T., Gondal, A.Z., & Hughes, J.N. (2018). Biochemistry, Collagen Synthesis.

[21] Cohen, I., Diegelmann, R., & Wise, W. (1976). Biomaterials and collagen synthesis. Journal of Biomedical Materials Research Part A, 10(6), 965-970.

[22] Burgess C. Topical vitamins. J Drugs Dermatol 2008;7:s2-6

[23] Abbassi, A.E., Khalid, N., Zbakh, H., & Ahmad, A.N. (2014). Physicochemical characteristics, nutritional properties, and health benefits of argan oil: a review. Critical reviews in food science and nutrition, 54 11, 1401-14 .

[24] Shapiro, S., & Saliou, C. (2001). Role of vitamins in skin care. Nutrition, 17(10), 839-844.

[25] Lauer, A., Groth, N., Haag, S., Darvin, M.E., Lademann, J.D., & Meinke, M.C. (2013). Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin pharmacology and physiology, 26 3, 147-54 .

[26] Duarte, Tiago & Cooke, Marcus & Jones, George. (2008). Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free radical biology & medicine. 46. 78-87. 10.1016/j.freeradbiomed.2008.09.028.

[27] Dallon, J., & Sherratt, J. (2006). A mathematical model for fibroblast and collagen orientation. Bulletin of Mathematical Biology, 60(1), 101-129.

[28] Frank, C.B. (2004) Ligament structure, physiology and function. Journal of Musculoskeletal and Neuronal Interactions, 4, 199-201.

[29] Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 22.3, Collagen: The Fibrous Proteins of the Matrix.

[30] Pullar, J.M., Carr, A.C., & Vissers, M.C. (2017). The Roles of Vitamin C in Skin Health. Nutrients.

[31] Serre, C., Papillard, M., Chavassieux, P., Voegel, J., & Boivin, G. (1999). Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research Part A, 42(4), 626-633.

[32] Chandrasekaran, N.C., Sanchez, W.Y., Mohammed, Y.H., Grice, J.E., Roberts, M.S., & Barnard, R.T. (2016). Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnesium research, 29 2, 35-42 .

[33] MacFarlane, A.J., Cogswell, M.E., de Jesus, J.M., Greene-Finestone, L.S., Klurfeld, D.M., Lynch, C.J., Regan, .K., & Yamini, .S. (2019). A report of activities related to the Dietary Reference Intakes from the Joint Canada-US Dietary Reference Intakes Working Group. American Journal of Clinical Nutrition, 109(2),

[34] Kafi, R., Kwak, H., Schumacher, W., Cho, S., Hanft, V., Hamilton, T., King, A., Neal, J., Varani, J., Fisher, G., Voorhees, J., & Kang, S. (2007). Improvement of Naturally Aged Skin With Vitamin A (Retinol). Archives of Dermatology, 143(5), 606-612.

[35] Min, Y., Niu, Z., Sun, T., Wang, Z., Jiao, P., Zi, B., Chen, P., Tian, D., & Liu, F. (2018). Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poultry Science, 97(4), 1238-1244.

[36] Kong, R., Cui, Y., Fisher, G., Wang, X., Chen, Y., Schneider, L., & Majmudar, G. (2016). A comparative study of the effects of retinol and retinoic acid on histological, molecular, and clinical properties of human skin. Journal of Cosmetic Dermatology, 15(1), 49-57.

[37] Varani, J., Warner, R.L., Gharaee-Kermani, M., Phan, S.H., Kang, S., Chung, J.H., Wang, Z., Datta, S.C., Fisher, G.E., & Voorhees, J.H. (2000). Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. The Journal of investigative dermatology, 114 3, 480-6 .

[38] Romana-Souza, B., Silva-Xavier, W., & Monte-Alto-Costa, A. (2018). Topical retinol attenuates stress-induced ageing signs in human skin ex vivo, throughEGFR activation viaEGF, but notERK andAP-1 activation. Experimental dermatology.

[39] Berkers, T., Dijk, L.V., Absalah, S., Smeden, J.V., & Bouwstra, J.A. (2017). Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Experimental dermatology, 26 1, 36-43 .

[40] WRIGHT, S. (1991). Essential fatty acids and the skin. British Journal of Dermatology, 125(6),

[41] Dapic, I., Kobetic, R., Brkljacic, L., Kezic, S., & Jakasa, I. (2018). Quantification of free fatty acids in human stratum corneum using tandem mass spectrometry and surrogate analyte approach. Biomedical Chromatography, 32(2), n/a-n/a.

[42] McCusker, M., & Grant-Kels, J. (2010). Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clinics in Dermatology, 28(4), 440-451.

[43] Cui, L., Jia, Y., Cheng, Z., Gao, Y., Zhang, G., Li, J., & He, C. (2016). Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. Journal of Cosmetic Dermatology, 15(4), 549-558.

[44] Kendall, A., Kiezel-Tsugunova, M., Brownbridge, L., Harwood, J., & Nicolaou, A. (2017). Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochimica et Biophysica Acta Biomembranes Or Bba Biomembranes, 1859(9), 1679-1689.

[45] Burnett, C., Fiume, M., Bergfeld, W., Belsito, D., Hill, R., Klaassen, C., Liebler, D., Marks, J., Shank, R., Slaga, T., Snyder, P., & Alan Andersen, F. (2017). Safety Assessment of Plant-Derived Fatty Acid Oils. International Journal of Toxicology, 36(3_suppl), 51S-129S.

[46] Arct, J., Chelkowska, M., Kasiura, K., & Pietrzykowski, P. (2002). The fatty acids as penetration enhancers of amino acids by ion pairing. International Journal of Cosmetic Science, 24(6),

[47] Dioguardi, F. (2008). Nutrition and skin. Collagen integrity: a dominant role for amino acids. Clinics in Dermatology, 26(6), 636-640.

[48] Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. International Journal of Biological Macromolecules, 104, 987-991.

[49] Dioguardi, F. (2008). Nutrition and skin. Collagen integrity: a dominant role for amino acids. Clinics in Dermatology, 26(6), 636-640.

[50] DePhillipo NN, Aman ZS, Kennedy MI, Begley JP, Moatshe G, LaPrade RF. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop J Sports Med. 2018;6(10):2325967118804544. Published 2018 Oct 25. doi:10.1177/2325967118804544

[51] Lacroix, S., Bouez, C., Vidal, S., Cenizo, V., Reymermier, C., Justin, V., Vičanová, J., & Damour, O. (2006). Supplementation with a complex of active nutrients improved dermal and epidermal characteristics in skin equivalents generated from fibroblasts from young or aged donors. Biogerontology, 8(2), 97-109.

[52] Anderson, B. Nutrition and wound healing: the necessity of assessment. British Journal of Nursing 2005 14:Sup5, S30-S38


[53] Moores, J. (2013). Vitamin C: a wound healing perspective. British Journal of Community Nursing, 18(Sup12), S6-S11.


[54] Sinno, S., Lee, D., & Khachemoune, A. (2011). Vitamins and cutaneous wound healing. Journal of Wound Care, 20(6), 287-293.


[55] Mohammed, B., Fisher, B., Kraskauskas, D., Ward, S., Wayne, J., Brophy, D., Fowler, A., Yager, D., & Natarajan, R. (2016). Vitamin C promotes wound healing through novel pleiotropic mechanisms. International Wound Journal, 13(4), 572-584.

[56] Johnstone, C., Farley, A., & Hendry, C. (2005). The physiological basics of wound healing. Nursing Standard, 19(43), 59-65.

[57] Samarawickrama, C., Chew, S., & Watson, S. (2015). Retinoic acid and the ocular surface. Survey of Ophthalmology, 60(3), 183-195.

[58] Graves C, Saffle J, Cochran A. Actual burn nutrition care practices:an update. J Burn Care Res 2009;30:77-82.

[59] Hobson, R. (2016). Vitamin E and wound healing: an evidence‐based review. International Wound Journal, 13(3), 331-335.

[60] Silva, J., Burger, B., Kühl, C., Candreva, T., dos Anjos, M., & Rodrigues, H. (2018). Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair. Mediators of Inflammation, 2018, 17

[61] Ribeiro Barros Cardoso, C., Aparecida Souza, M., Amália Vieira Ferro, E., Favoreto, S., & Deolina Oliveira Pena, J. (2004). Influence of topical administration of n‐3 and n‐6 essential and n‐9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair and Regeneration, 12(2),

[62] Cardoso, C., Favoreto, S., Oliveira, L., Vancim, J., Barban, G., Ferraz, D., & Silva, J. (2011). Oleic acid modulation of the immune response in wound healing: A new approach for skin repair. Immunobiology, 216(3), 409-415.

[63] Tanvir, R., Javeed, A., & Rehman, Y. (2018). Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiology Letters, AdvanceArticle(12),

[64] Murillo, A., & Fernandez, M. (2016). Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Advances in Nutrition, 7(1), 14-24.

[65] Ruffell, S., Müller, K., & McConkey, B. (2015). Comparative assessment of microalgal fatty acids as topical antibiotics. Journal of Applied Phycology, 28(3), 1695-1704.

[66] Jung, S., & Lee, S. (2016). The antibacterial effect of fatty acids on Helicobacter pylori infection. The Korean Journal of Internal Medicine, 31(1), 30-35.

[67] Desbois, A., Mearns-Spragg, A., & Smith, V. (2008). A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 11(1), 45-52.

[68] Hinton Jr, A., & Ingram, K. (2012). Influence of Ethylenediamine-N,N’-Discuccinic Acid (EDDS) Concentration on the Bactericidal Activity of Fatty Acids in Vitro*. Journal of Food Safety, 32(1), 102-107.

[69] “Microdermabrasion.” Microdermabrasion, American Academy of Dermatology, 2019, www.aad.org/public/diseases/cosmetic-treatments/microdermabrasion.


[70] Nagarkatti, P., Pandey, R., Rieder, S. A., Hegde, V. L., & Nagarkatti, M. (2009, October). Cannabinoids as novel anti-inflammatory drugs. Future medicinal chemistry. Retrieved December 10, 2022.

[71] Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel). 2019;9(1):21. Published 2019 Dec 25. doi:10.3390/antiox9010021

[72] Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis. 2020;11(8):714. Published 2020 Sep 1. doi:10.1038/s41419-020-02892-1

[73] Frane N, Stapleton E, Iturriaga C, Ganz M, Rasquinha V, Duarte R. Cannabidiol as a treatment for arthritis and joint pain: an exploratory cross-sectional study. J Cannabis Res. 2022;4(1):47. Published 2022 Aug 24. doi:10.1186/s42238-022-00154-9

[74] Huo M, Cui X, Xue J, et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res. 2013;180(1):e47-e54. doi:10.1016/j.jss.2012.10.050

[75] Mączka W, Duda-Madej A, Grabarczyk M, Wińska K. Natural Compounds in the Battle against Microorganisms-Linalool. Molecules. 2022;27(20):6928. Published 2022 Oct 15. doi:10.3390/molecules27206928

[76] Dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, do Socorro Ferraz Maia C. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr Neuropharmacol. 2022;20(6):1073-1092. doi:10.2174/1570159X19666210920094504

[77] Zivkovic AM, Telis N, German JB, Hammock BD. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric (Berkeley). 2011;65(3):106-111. doi:10.3733/ca.v065n03p106

[78] Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr Atheroscler Rep. 2004;6(6):461-467. doi:10.1007/s11883-004-0087-5

[79] Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355-374. doi:10.3390/nu2030355

[80] Wallert M, Börmel L, Lorkowski S. Inflammatory Diseases and Vitamin E-What Do We Know and Where Do We Go?. Mol Nutr Food Res. 2021;65(1):e2000097. doi:10.1002/mnfr.202000097

[81] Nazrun AS, Norazlina M, Norliza M, Nirwana SI. The anti-inflammatory role of vitamin e in prevention of osteoporosis. Adv Pharmacol Sci. 2012;2012:142702. doi:10.1155/2012/142702

[82] Tahan G, Aytac E, Aytekin H, et al. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg. 2011;54(5):333-338. doi:10.1503/cjs.013610

[83] Wiedermann U, Chen XJ, Enerbäck L, Hanson LA, Kahu H, Dahlgren UI. Vitamin A deficiency increases inflammatory responses. Scand J Immunol. 1996;44(6):578-584. doi:10.1046/j.1365-3083.1996.d01-351.x

[84] Gholizadeh M, Basafa Roodi P, Abaj F, et al. Influence of Vitamin A supplementation on inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Rep. 2022;12(1):21384. Published 2022 Dec 10. doi:10.1038/s41598-022-23919-x

[85] Wu S, Chen R, Chen J, et al. Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology. Molecules. 2023;28(22):7540. Published 2023 Nov 11. doi:10.3390/molecules28227540

[86] Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther. 2015;9:3405-3412. Published 2015 Jul 1. doi:10.2147/DDDT.S83144

[87] Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants (Basel). 2022;11(10):1993. Published 2022 Oct 7. doi:10.3390/antiox11101993

[88] Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther. 2015;9:3405-3412. Published 2015 Jul 1. doi:10.2147/DDDT.S83144

[89] Ashique S, Kumar S, Hussain A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer [published correction appears in J Health Popul Nutr. 2023 Nov 2;42(1):117]. J Health Popul Nutr. 2023;42(1):74. Published 2023 Jul 27. doi:10.1186/s41043-023-00423-0

[90] Veronese N, Pizzol D, Smith L, Dominguez LJ, Barbagallo M. Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022;14(3):679. Published 2022 Feb 5. doi:10.3390/nu14030679

[91] Eskander M, Razzaque MS. Can Maintaining Optimal Magnesium Balance Reduce the Disease Severity of COVID-19 Patients?. Front Endocrinol (Lausanne). 2022;13:843152. Published 2022 Mar 29. doi:10.3389/fendo.2022.843152

[92] Zhang X, Xue C, Xu Q, et al. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond). 2019;16:40. Published 2019 Jun 6. doi:10.1186/s12986-019-0359-2

[93] Zhang X, Zhang P, Liu Y, et al. Effects of Caprylic Acid and Eicosapentaenoic Acid on Lipids, Inflammatory Levels, and the JAK2/STAT3 Pathway in ABCA1-Deficient Mice and ABCA1 Knock-Down RAW264.7 Cells. Nutrients. 2023;15(5):1296. Published 2023 Mar 6. doi:10.3390/nu15051296

[94] Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci. 2014;73(3):232-240. doi:10.1016/j.jdermsci.2013.10.010

[95] Lee SI, Kang KS. Function of capric acid in cyclophosphamide-induced intestinal inflammation, oxidative stress, and barrier function in pigs. Sci Rep. 2017;7(1):16530. Published 2017 Nov 28. doi:10.1038/s41598-017-16561-5

[96] Deme P, Narasimhulu CA, Parthasarathy S. Identification and evaluation of anti-inflammatory properties of aqueous components extracted from sesame (Sesamum indicum) oil. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1087-1088:61-69. doi:10.1016/j.jchromb.2018.04.029